Skip to Content
Execution & MonitoringRisk Assessment

Risk Assessment

AiQarus agents assess risk in real-time to prioritize actions and trigger appropriate human oversight.

How Risk Assessment Works

Every action an agent considers is scored:

┌─────────────────────────────────────────────────────────────────────┐ │ Risk Assessment Engine │ │ │ │ Action: Revoke AWS Production admin access │ │ │ │ ┌─────────────────────────────────────────────────────────────┐ │ │ │ Risk Factors │ │ │ │ │ │ │ │ Access Scope: │ │ │ │ • AWS Production (admin) → +30 points │ │ │ │ • GitHub org admin → +25 points │ │ │ │ • Customer Slack channels → +10 points │ │ │ │ │ │ │ │ Departure Context: │ │ │ │ • Leaving for competitor → +20 points │ │ │ │ • Short notice (< 2 weeks) → +10 points │ │ │ │ │ │ │ │ Anomalies: │ │ │ │ • Unusual download activity → +15 points │ │ │ └─────────────────────────────────────────────────────────────┘ │ │ │ │ │ ▼ │ │ ┌─────────────────────────────────────────────────────────────┐ │ │ │ Total Risk Score: 85/100 (HIGH) │ │ │ └─────────────────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────────────────┘

Risk Levels

LevelScore RangeBehavior
Low0-25Execute autonomously
Medium26-50Execute with notification
High51-75Require approval
Critical76-100Full review + escalation

Risk Factors

Action-Based Factors

FactorRisk PointsExamples
Read operations0-5List users, view documents
Write operations10-20Update records, send messages
Delete operations30-50Remove access, delete files
Admin operations40-60Transfer ownership, modify permissions

Data Sensitivity

FactorRisk PointsExamples
Public data0Public website content
Internal data5-15Internal documents
Confidential20-30Financial data, HR records
PII30-40Customer personal data
Regulated40-50HIPAA, SOX protected data

Scope of Impact

FactorRisk PointsExamples
Single user0-5One person affected
Team10-20Department affected
Organization25-35Company-wide impact
External35-50Customers/partners affected

Reversibility

FactorRisk PointsExamples
Easily reversible0Can undo immediately
Reversible with effort10-20Requires admin action
Partially reversible25-35Some data loss possible
Irreversible40-50Cannot be undone

Context-Aware Scoring

Risk scores adjust based on context:

Employee Offboarding Example

{ "base_action": "revoke_access", "base_risk": 25, "context_modifiers": { "departure_type": { "voluntary": 0, "involuntary": +15, "competitor": +25 }, "access_level": { "standard": 0, "elevated": +10, "admin": +20 }, "system_sensitivity": { "internal": 0, "production": +20, "customer_data": +30 } }, "anomaly_modifiers": { "unusual_download": +15, "after_hours_access": +10, "new_external_shares": +20 } }

Prioritization

High-risk actions are prioritized:

┌─────────────────────────────────────────────────────────────────────┐ │ Recommended Action Plan (prioritized by risk): │ │ │ │ 🔴 IMMEDIATE (requires approval): │ │ 1. Revoke AWS Production admin access Risk: 85 │ │ 2. Revoke GitHub org admin rights Risk: 70 │ │ │ │ 🟡 TODAY (flagged for review): │ │ 3. Audit recent data exports Risk: 55 │ │ 4. Review repository access patterns Risk: 50 │ │ │ │ 🟢 BEFORE LAST DAY: │ │ 5. Knowledge transfer for projects Risk: 30 │ │ 6. Update documentation Risk: 25 │ │ │ │ ⚪ ON LAST DAY: │ │ 7. Disable all accounts Risk: 20 │ │ 8. Send farewell message Risk: 5 │ │ │ └─────────────────────────────────────────────────────────────────────┘

Anomaly Detection

The risk engine integrates with anomaly detection:

Data Export Monitoring

{ "anomaly_type": "unusual_download", "user": "marcus.chen@company.com", "details": { "downloaded_bytes": 2400000000, "baseline_bytes": 50000000, "deviation": "48x normal", "timeframe": "last 7 days" }, "risk_modifier": +15 }

Access Pattern Analysis

{ "anomaly_type": "access_pattern", "user": "marcus.chen@company.com", "details": { "unusual_systems": ["customer-db", "billing-archive"], "unusual_times": ["2:00 AM - 4:00 AM"], "frequency_change": "+300%" }, "risk_modifier": +20 }

Configuring Risk Rules

Custom Risk Weights

risk_rules: action_weights: delete: 40 revoke_admin: 35 transfer_ownership: 30 modify_permissions: 25 send_external: 20 sensitivity_weights: production: 30 customer_data: 35 financial: 30 pii: 40 context_weights: competitor_departure: 25 involuntary_termination: 20 short_notice: 10

Custom Thresholds

risk_thresholds: auto_execute: 25 notify: 50 require_approval: 70 require_escalation: 85

Risk Reports

View risk assessments in run details:

┌─────────────────────────────────────────────────────────────────────┐ │ Risk Assessment Report │ │ Run: Off-boarding Marcus Chen │ │ │ │ Overall Risk Level: HIGH (85/100) │ │ │ │ Factor Breakdown: │ │ ────────────────────────────────────────────────────────────────── │ │ Access Scope 65 pts │ │ ├─ AWS Production Admin 30 │ │ ├─ GitHub Org Admin 25 │ │ └─ Customer Slack Access 10 │ │ │ │ Departure Context 30 pts │ │ ├─ Competitor Departure 20 │ │ └─ Short Notice 10 │ │ │ │ Anomalies Detected 15 pts │ │ └─ Unusual Download (2.3GB) 15 │ │ │ │ Deductions -25 pts │ │ └─ Positive Performance History -10 │ │ └─ Long Tenure (4 years) -15 │ │ │ │ [View Full Report] [Export PDF] │ │ │ └─────────────────────────────────────────────────────────────────────┘

Best Practices

Calibrate Thresholds

Review risk scores after deployment:

  • Are important actions being flagged?
  • Are too many routine actions requiring approval?
  • Adjust weights based on your organization’s risk tolerance

Incorporate Domain Knowledge

Add context-specific risk factors:

  • Industry regulations
  • Company policies
  • Historical incident data

Review Anomaly Alerts

Don’t ignore anomaly detections:

  • Investigate unusual patterns
  • Update baselines as needed
  • Feed learnings back into the system